

Welcome to RIPE Atlas Sagan’s documentation!

A parsing library for RIPE Atlas measurement results

Why This Exists

RIPE Atlas generates a lot of data, and the format of that data changes over
time. Often you want to do something simple like fetch the median RTT for each
measurement result between date X and date Y. Unfortunately, there are are
dozens of edge cases to account for while parsing the JSON, like the format of
errors and firmware upgrades that changed the format entirely.

To make this easier for our users (and for ourselves), we wrote an easy to use
parser that’s smart enough to figure out the best course of action for each
result, and return to you a useful, native Python object.

Contents:

	Requirements & Installation
	Requirements

	Installation

	Use & Examples
	How To Use This Library

	Examples

	Attributes & Methods
	Common Attributes

	Ping

	Traceroute

	DNS

	SSL Certificate

	HTTP

	NTP

	How To Contribute

	Changelog

Requirements & Installation

Requirements

As you might have guessed, with all of the magic going on under the hood, there
are a few dependencies:

	cryptography [https://pypi.python.org/pypi/cryptography]

	python-dateutil [https://pypi.python.org/pypi/python-dateutil/]

	pytz [https://pypi.python.org/pypi/pytz/]

Additionally, we recommend that you also install ujson [https://pypi.python.org/pypi/ujson/] as it will speed up
the JSON-decoding step considerably, and sphinx [https://pypi.python.org/pypi/Sphinx/] if you intend to build the
documentation files for offline use.

Installation

Installation should be easy, though it may take a while to install all of the
aforementioned requirements. Using pip is the recommended method.

Using pip

The quickest and easiest way to install Sagan is to use pip:

$ pip install ripe.atlas.sagan

From GitHub

If you’re feeling a little more daring and want to use whatever is on GitHub,
you can have pip install right from there:

$ pip install git+https://github.com/RIPE-NCC/ripe.atlas.sagan.git

From a Tarball

If for some reason you want to just download the source and install it manually,
you can always do that too. Simply un-tar the file and run the following in the
same directory as setup.py.:

$ python setup.py install

Troubleshooting

Some setups (like MacOS) have trouble with building the dependencies required
for reading SSL certificates. If you don’t care about SSL stuff and only want
to use sagan to say, parse traceroute or DNS results, then you can do the following:

$ SAGAN_WITHOUT_SSL=1 pip install ripe.atlas.sagan

More information can also be found here [https://cryptography.io/en/latest/installation/].

If you do care about SSL and have to use a Mac, then this issue [https://github.com/RIPE-NCC/ripe.atlas.sagan/issues/52] will likely
be of assistance. Essentially, you will need to uninstall Xcode (if it’s
installed already), then attempt to use gcc. This will trigger the OS to
ask if you want to install the Xcode compilation tools. Click install, and
when that’s finished, install Sagan with this command:

$ CFLAGS=”-I/usr/include” pip install ripe.atlas.sagan

Use & Examples

The library contains a full test suite for each measurement type, so if you’re
looking for examples, it’s a good idea to start there. For this document we’ll
cover basic usage and some simple examples to get you started.

How To Use This Library

Sagan’s sole purpose is to make RIPE Atlas measurements manageable from within
Python. You shouldn’t have to be fiddling with JSON, or trying to find values
that changed locations between firmware versions. Instead, you should always
be able to pass in the JSON string and immediately get usable Python objects.

Important Note

The one thing that tends to confuse people when first trying out Sagan is that
this library operates on single measurement results, and not a list of
results. If you have a list of results (for example, the output of the
measurement results API), then you must loop over those results and pass each
result to Sagan for parsing.

Basics

To that end, the interface is pretty simple. If you have a ping measurement
result, then use the PingResult class to make use of the data:

from ripe.atlas.sagan import PingResult

my_result = PingResult('this is where your big JSON blob goes')

my_result.af
Returns 6

my_result.rtt_median
Returns 123.456

Note that rtt_median isn’t actually in the JSON data passed in. It’s
calculated during the parsing phase so you don’t need to fiddle with looping
over attributes in a list and doing the math yourself.

Plain Text Not Required

It should be noted that while all of the examples here use a plain text string
for our results, Sagan doesn’t force you to pass in a string. It’s just as
happy with a Python dict, the result of already running your result string
through json.loads():

import json
from ripe.atlas.sagan import PingResult

my_result_dict = json.loads('this is where your big JSON blob goes')
my_result = PingResult(my_result_dict)

my_result.af
Returns 6

my_result.rtt_median
Returns 123.456

Agnostic Parsing

There may be a case where you have code that’s just expected to parse a result
string, without knowing ahead of time what type of result it is. For this we
make use of the parent Result class’ get() method:

from ripe.atlas.sagan import Result

my_result = Result.get('this is where your big JSON blob goes')

my_result.af
Returns 6

my_result.rtt_median
Returns 123.456

As you can see it works just like PingResult, but doesn’t force you to know its
type up front. Note that this does incur a small performance penalty however.

Errors & Malformations

RIPE Atlas, like the Internet is never 100% what you’d expect. Sometimes your
measurement will return an error such as a timout or DNS lookup problem, and
sometimes the data in a result might even be malformed on account of data
corruption, damaged probe storage, etc.

And like the most applications on the Internet, Sagan attemps to handle these
inconsistencies gracefully. You can decide just how gracefully however.

Say for example you’ve got a result that looks alright, but the abuf value
is damaged in some way rendering it unreadable. You’ll find that while the
DnsResult object will not have a is_malformed=False, the portion that is
unreadable will be set to True:

from ripe.atlas.sagan import DnsResult
my_result = DnsResult('your JSON blob')

my_result.is_error # False
my_result.is_malformed # False
my_result.responses[0].abuf.is_malformed # True
my_result.responses[1].abuf.is_malformed # False

You can control what you’d like Sagan to do in these cases by setting
on_malformation= when parsing:

from ripe.atlas.sagan import DnsResult

Sets is_malformed=True and issues a warning
my_result = DnsResult('your JSON blob')

Sets is_malformed=True
my_result = DnsResult('your JSON blob', on_malformation=DnsResult.ACTION_IGNORE)

Sets explodes with a ResultParseError
my_result = DnsResult('your JSON blob', on_malformation=DnsResult.ACTION_FAIL)

Similarly, you can do the same thing with on_error=, which perform the same
way when Sagan encounters an error like a timeout or DNS lookup problem.

Error handling is not yet complete in Sagan, so if you run across a case where
it behaves in a way other than what you’d expect, please send a copy of the
problematic result to atlas@ripe.net and we’ll use it to update this library.

Examples

Parsing Results out of a Local File

Assume for a moment that you’ve downloaded a bunch of results into a local file
using our fragmented JSON format. That is, you have in your possession a file
that has a separate JSON result on every line. For the purposes of our example
we’ll call it file.txt.:

from ripe.atlas.sagan import Result

my_results_file = "/path/to/file.txt"
with open(my_results_file) as results:
 for result in results.readlines():
 parsed_result = Result.get(result)
 print(parsed_result.origin)

Basically you use Python to open the file (using with) and then loop over
each line in the file (.readlines()), sending each line into Sagan which
returns a parsed_result. With that result, you can then pull out any of
the values you like, using the Attributes & Methods documentation as a
reference.

Pulling Directly from the API

A common use case for the parser is to plug it into our RESTful API service.
The process for this is pretty simple: fetch a bunch of results, loop over them,
and for each one, apply the parser to get the value you want.

Say for example you want to get the checksum value for each result from
measurement #1012449 [https://atlas.ripe.net/measurements/1012449/]. To do this, we’ll fetch the latest results from each
probe via the measurement-latest API, and parse each one to get the
checksum values:

import requests
from ripe.atlas.sagan import SslResult

source = "https://atlas.ripe.net/api/v1/measurement-latest/1012449/"
response = requests.get(source).json

for probe_id, result in response.items():

 result = result[0] # There's only one result for each probe
 parsed_result = SslResult(result) # Parsing magic!

 # Each SslResult has n certificates
 for certificate in parsed_result.certificates:
 print(certificate.checksum) # Print the checksum for this certificate

 # Make use of the handy get_checksum_chain() to render the checksum of each certificate into one string if you want
 print(parsed_result.get_checksum_chain())

Samples from Each Type

Ping

For more information regarding all properties available, you should consult the
Ping section of this documentation.:

ping_result.packets_sent # Int
ping_result.rtt_median # Float, rounded to 3 decimal places
ping_result.rtt_average # Float, rounded to 3 decimal places

Traceroute

For more information regarding all properties available, you should consult the
Traceroute section of this documentation.:

traceroute_result.af # 4 or 6
traceroute_result.total_hops # Int
traceroute_result.destination_address # An IP address string

DNS

For more information regarding all properties available, you should consult the
DNS section of this documentation.:

dns_result.responses # A list of Response objects
dns_result.responses[0].response_time # Float, rounded to 3 decimal places
dns_result.responses[0].headers # A list of Header objects
dns_result.responses[0].headers[0].nscount # The NSCOUNT value for the first header
dns_result.responses[0].questions # A list of Question objects
dns_result.responses[0].questions[0].type # The TYPE value for the first question
dns_result.responses[0].abuf # The raw, unparsed abuf string

SSL Certificates

For more information regarding all properties available, you should consult the
SSL Certificate section of this documentation.:

ssl_result.af # 4 or 6
ssl_result.certificates # A list of Certificate objects
ssl_result.certificates[0].checksum # The checksum for the first certificate

HTTP

For more information regarding all properties available, you should consult the
HTTP section of this documentation.:

http_result.af # 4 or 6
http_result.uri # A URL string
http_result.responses # A list of Response objects
http_result.responses[0].body_size # The size of the body of the first response

Attributes & Methods

Common Attributes

All measurement results have a few common properties.

	Property

	Type

	Explanation

	raw_data

	dict

	The entire measurement result, as-is from json.loads()

	created

	datetime

	The time at which this result was initiated

	created_timestamp

	int

	A Unix timestamp value for the created attribute

	measurement_id

	int

	

	probe_id

	int

	

	firmware

	int

	The probe firmware release

	origin

	str

	The IP address of the probe

	seconds_since_sync

	int

	The number of seconds since the probe last syncronised its clock

	is_malformed

	bool

	Whether the result (or related portion thereof) is unparseable

	is_error

	bool

	Whether or not there were errors in parsing/handling this result

	error_message

	str

	If the result is an error, the message string is in here

Ping

The simplest measurement type, ping measurement results contain all of the
properties common to all measurements as well as the following:

	Property

	Type

	Explanation

	af

	int

	The address family. It’s always either a 4 or a 6.

	duplicates

	int

	The number duplicates found

	rtt_average

	float

	

	rtt_median

	float

	

	rtt_min

	float

	

	rtt_max

	float

	

	packets_sent

	int

	

	packets_received

	int

	

	packet_size

	int

	

	destination_name

	str

	The string initially given as the target. It can be an IP address or a domain name

	destination_address

	str

	An IP address represented as a string

	step

	int

	The number of seconds between ping requests (interval)

	packets

	list

	A list of ping Packet objects

Packet

Each ping request sends n packets, where n is a value specified at
measurement creation time. We represent these packets as Packet objects.

	Property

	Type

	Explanation

	rtt

	float

	

	dup

	bool

	Set to True if this packet is a duplicate

	ttl

	int

	

	source_address

	str

	An IP address represented as a string

Traceroute

Probably the largest result type, traceroute measurement results contain all
of the properties common to all measurements as well as the following:

	Property

	Type

	Explanation

	af

	int

	The address family. It’s always either a 4 or a 6.

	destination_name

	str

	The string initially given as the target. It can be an IP address or a domain name

	destination_address

	str

	An IP address represented as a string

	source_address

	str

	An IP address represented as a string

	end_time

	datetime

	The time at which the traceroute finished

	end_time_timestamp

	int

	A Unix timestamp for the end_time attribute

	paris_id

	int

	

	size

	int

	The packet size

	protocol

	str

	One of ICMP, TCP, UDP

	hops

	list

	A list of Hop objects. If the parse_all_hops parameter is False, this will only contain the last hop.

	total_hops

	int

	The total number of hops

	ip_path

	list

	A list of dicts containing the IPs at each hop. This is just for convenience as all of these values are accessible via the Hop and Packet objects.

	last_median_rtt

	float

	The median value of all RTTs from the last successful hop

	destination_ip_responded

	bool

	Set to True if the last hop was a response from the destination IP

	last_hop_responded

	bool

	Set to True if the last hop was a response at all

	is_success

	bool

	Set to True if the traceroute finished successfully

	last_hop_errors

	list

	A list of last hop’s errors

It is also possible to supply the following parameter to control parsing of Traceroute results:

	Parameter

	Type

	Default

	Explanation

	parse_all_hops

	bool

	True

	Set to False to stop parsing Hop objects after the last_* properties (see above) have been set. This will cause hops to only contain the last Hop.

Hop

Each hop in the traceroute is available as a Hop object.

	Property

	Type

	Explanation

	index

	int

	The hop number, starting with 1

	packets

	list

	A list of tracroute Packet objects

	median_rtt

	float

	The median value of all RTTs of the hop

Packet

	Property

	Type

	Explanation

	origin

	str

	The IP address of where the packet is coming from

	rtt

	float

	

	size

	int

	

	ttl

	int

	

	arrived_late_by

	int

	If the packet arrived late, this number represents “how many hops ago” this packet was sent

	internal_ttl

	int

	The time-to-live for the packet that triggered the error ICMP. The default is 1

	destination_option_size

	int

	The size of the IPv6 destination option header

	hop_by_hop_option_size

	int

	The size of the IPv6 hop-by-hop option header

	icmp_header

	IcmpHeader

	See IcmpHeader below

IcmpHeader

This class is slightly different than other parts of Sagan as it in objects
we find a complex generic list containing generic dictionaries pulled directly
from the JSON blob. The decision not to further parse this bob into separate
Python models was made based on the assumption that much of this section is very
edge-case and the contents are present sporadically.

If however there is a demand for further development of this portion of the
result, we can expand it. Until then though, IcmpHeader is a very simple
class, the majority of data living in objects.

For further information about this portion of a traceroute result, you should
consult our data structure documentation [https://atlas.ripe.net/docs/data_struct/#v4610_traceroute]

	Property

	Type

	Explanation

	version

	int

	RFC4884 version

	rfc4884

	bool

	True if length indication is present, False otherwise

	objects

	list

	As mentioned above a complete dump of whatever is in the obj property

DNS

The most complicated result type, dns measurement results contain all of the
properties common to all measurements as well as the following:

	Property

	Type

	Explanation

	responses

	list

	A list of DNS Response objects (see below)

Response

Most DNS measurement results consist of a single response, but in some cases,
there may be more than one. Regardless, every Response instance has the
following properties:

	Property

	Type

	Explanation

	raw_data

	dict

	The fragment of the initial JSON that pertains to this response

	af

	int

	The address family. It’s always either a 4 or a 6.

	destination_address

	str

	An IP address represented as a string

	source_address

	str

	An IP address represented as a string

	protocol

	str

	One of TCP, UDP

	abuf

	Message

	See Message below

	qbuf

	Message

	See Message below

	response_time

	float

	Time, in milliseconds until the response was received

	response_id

	int

	The sequence number of this result within a group of results, available if the resolution was done by the probe’s local resolver

Message

Responses can contain either an abuf or a qbuf which are both Message
objects. If you want the string representation, simply cast the object as a
string with str().

	Property

	Type

	Explanation

	raw_data

	dict

	The fragment of the initial JSON that pertains to this response

	header

	Header

	See Header below

	edns0

	Edns0

	See EDNS0 below, if any

	questions

	list

	A list of Question objects

	answers

	list

	A list of Answer objects, if any

	authorities

	list

	A list of Answer objects, if any

	additionals

	list

	A list of Answer objects, if any

A note on pre-calculated values

By default, when you pass a result into Sagan, it will attempt to parse the
abuf and qbuf strings (if any) into Message objects. However, some
of the values in that abuf may have already been pre-calculated and stored
alongside the other attributes in the result. Many Header values for
example, can be found in the raw result (outside of the abuf string), so parsing
the abuf for these values is redundant and potentially unnecessary if these
values are all you need.

For this case, Sagan supports passing parse_buf=False to the DnsResult
class. If you opt for this method, the abuf will not be parsed, and any values
not immediately available in the result will return None. For example:

from ripe.atlas.sagan import DnsResult
my_result = DnsResult(
 '<some result data including name, type, and rdata, but not ttl or class>',
 parse_buf=False
)
result.responses[0].abuf.answers[0].name # "version.bind"
result.responses[0].abuf.answers[0].klass # None
result.responses[0].abuf.answers[0].rd_length # None
result.responses[0].abuf.answers[0].type # "TXT"
result.responses[0].abuf.answers[0].ttl # None
result.responses[0].abuf.answers[0].data # "Some RDATA value"

Note also that Result.get() accepts parse_buf= as well:

from ripe.atlas.sagan import Result
my_result = Result.get(
 '<some result data including name, type, and rdata, but not ttl or class>',
 parse_buf=False
)
result.responses[0].abuf.answers[0].name # "version.bind"
...

Header

All of these properties conform to RFC 1035 [https://www.ietf.org/rfc/rfc1035.txt], so we won’t go into detail about
them here.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the parsed abuf that represents this section

	aa

	bool

	

	qr

	bool

	

	nscount

	int

	Otherwise known as the namserver count or authority count.

	qdcount

	int

	

	ancount

	int

	

	tc

	bool

	

	rd

	bool

	

	arcount

	int

	

	return_code

	str

	

	opcode

	str

	

	ra

	bool

	

	z

	int

	

	id

	int

	

Question

The question section of the response.

NOTE: In keeping with Python conventions, we use the propertyname
klass here instead of the more intuitive (and illegal in Python)
class. It may be confusing for non-Python programmers, but unfortunately
it’s a limitation of the language.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the parsed abuf that represents this section

	klass

	str

	The CLASS value, spelt this way to conform to Python norms

	type

	str

	

	name

	str

	

Answer

The answer section of the response.

NOTE: In keeping with Python conventions, we use the propertyname
klass here instead of the more intuitive (and illegal in Python)
class. It may be confusing for non-Python programmers, but unfortunately
it’s a limitation of the language.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the parsed abuf that represents this section

	klass

	str

	The CLASS value, spelt this way to conform to Python norms

	type

	str

	

	name

	str

	

	ttl

	int

	

	address

	str

	An IP address

	rd_length

	int

	

There is a different sub-class of Answer for every DNS answer type. These
are all briefly outlined below.

AAnswer & AAAAAnswer

Both of these classes have only one additional property to their parent
Answer class: address.

	Property

	Type

	Explanation

	answer

	str

	The address response

NsAnswer & CnameAnswer

Both of these subclasses only have one additional property: target.

	Property

	Type

	Explanation

	target

	str

	The address of the target

MxAnswer

	Property

	Type

	Explanation

	preference

	int

	The preference number

	mail_exchanger

	str

	The exchanger name

SoaAnswer

There are a lot of additional properties for SOA answers, as well as a few
aliases for people who like human-readable names.

	Property

	Type

	Explanation

	mname

	str

	The master server name

	rname

	str

	The maintainer name

	serial

	int

	

	refresh

	int

	

	retry

	int

	

	expire

	int

	

	minimum

	int

	The negative TTL

	master_server_name

	str

	An alias for mname

	maintainer_name

	str

	An alias for rname

	negative_ttl

	str

	An alias for minimum

	nxdomain

	str

	An alias for minimum

DsAnswer

	Property

	Type

	tag

	int

	algorithm

	int

	digest_type

	int

	delegation_key

	str

DnskeyAnswer

	Property

	Type

	flags

	int

	algorithm

	int

	protocol

	int

	key

	str

TxtAnswer

A class for DNS TXT responses, TxtAnswer has all of the properties of an
Answer class, but with two additional properties:

	Property

	Type

	Explanation

	data

	list

	The response text, represented as a list of strings, though in most cases, the list has only one element.

	data_string

	str

	The string representation of data, joining all elements of the list with a space.

RRSigAnswer

	Property

	Type

	type_covered

	str

	algorithm

	int

	labels

	int

	original_ttl

	int

	signature_expiration

	int

	signature_inception

	int

	key_tag

	int

	signer_name

	str

	signature

	str

Note that RRsigAnswer``s have a special string representation, where the
values of ``type_covered, algorithm, labels, original_ttl,
signature_expiration, signature_inception, key_tag, signer_name`,
and ``signature are all concatenated with spaces.

NsecAnswer

	Property

	Type

	next_domain_name

	str

	types

	list

Nsec3Answer

	Property

	Type

	hash_algorithm

	int

	flags

	int

	iterations

	int

	salt

	str

	hash

	str

	types

	list

Nsec3ParamAnswer

	Property

	Type

	algorithm

	int

	flags

	int

	iterations

	int

	salt

	str

PtrAnswer

	Property

	Type

	target

	str

SrvAnswer

	Property

	Type

	priority

	int

	weight

	int

	port

	int

	target

	str

SshfpAnswer

	Property

	Type

	algorithm

	int

	digest_type

	int

	fingerprint

	str

TlsaAnswer

	Property

	Type

	certificate_usage

	int

	selector

	int

	matching_type

	int

	certificate_associated_data

	str

HinfoAnswer

	Property

	Type

	cpu

	str

	os

	str

EDNS0

The optional EDNS0 section of the response.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the parsed abuf that represents this section

	extended_return_code

	int

	

	name

	str

	

	type

	str

	

	udp_size

	int

	

	version

	int

	

	z

	int

	

	options

	list

	A list of Option objects

Option

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the EDNS0 section that represents this option

	nsid

	str

	

	code

	int

	

	length

	int

	

	name

	str

	

SSL Certificate

SSL certificate measurement results contain all of the properties
common to all measurements as well as the following:

	Property

	Type

	Explanation

	af

	int

	The address family. It’s always either a 4 or a 6.

	destination_name

	str

	The string initially given as the target. It can be an IP address or a domain name

	destination_address

	str

	An IP address

	source_address

	str

	An IP address

	port

	int

	The port numer

	method

	str

	This should always be “SSL”

	version

	str

	

	response_time

	float

	Time, in milliseconds until the response was received

	time_to_connect

	float

	Time, in milliseconds until the connection was established

	certificates

	list

	A list of Certificate objects

	is_signed

	bool

	Set to True if the certificate is self-signed

	checksum_chain

	str

	A list of all checksums for all certificates in this result, joined with the arbitrary string ::. This can come in handy when you’re trying to compare checksums of multiple results.

Certificate

Each SSL certificate measurement result can contain multiple Certificate objects.

	Property

	Type

	Explanation

	raw_data

	dict

	The fragment of the initial JSON that pertains to this response

	subject_cn

	str

	The subject’s common name

	subject_o

	str

	The subject’s organisation

	subject_c

	str

	The subject’s country

	issuer_cn

	str

	The issuer’s common name

	issuer_o

	str

	The issuer’s organisation

	issuer_c

	str

	The issuer’s country

	valid_from

	datetime

	

	valid_until

	datetime

	

	checksum_md5

	str

	The md5 checksum

	checksum_sha1

	str

	The sha1 checksum

	checksum_sha256

	str

	The sha256 checksum

	has_expired

	bool

	Set to True if the certificate is no longer valid

	extensions

	dict

	Parsed extensions. For now it can only be subjectAltName, which is a list of names contained in the SAN extension, if that exists.

HTTP

HTTP measurement results contain all of the properties
common to all measurements as well as the following:

	Property

	Type

	Explanation

	uri

	str

	

	method

	str

	The HTTP method

	responses

	list

	A list of Response objects

Response

Each HTTP measurement result can contain multiple Response objects.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the JSON that pertains to this response

	af

	int

	The address family. It’s always either a 4 or a 6.

	body_size

	int

	The total number of bytes in the body

	head_size

	int

	The total number of bytes in the head

	destination_address

	str

	An IP address

	source_address

	str

	An IP address

	code

	int

	The HTTP response code

	response_time

	float

	Time, in milliseconds until the response was received

	version

	str

	The HTTP version

NTP

NTP measurement results contain all of the properties
common to all measurements as well as the following:

	Property

	Type

	Explanation

	leap_second_indicator

	str

	Leap second indicator

	poll

	int

	Poll interval

	precision

	float

	

	protocol

	str

	UDP

	reference_id

	str

	Reference id returned by server

	reference_time

	float

	The NTP time the server last contacted the reference time source

	root_delay

	float

	Round trip time from the server to the reference time source

	root_dispersion

	float

	Accuracy of server’s clock

	stratum

	int

	How far in hops is server from reference time source

	version

	int

	The NTP version

	mode

	str

	Ntp communication mode. Usually server

	rtt_median

	float

	The median value of packets’ rtt

	offset_median

	float

	The median value of the packets’ offset

	packets

	list

	A list of ntp Response objects

Response

Each HTTP measurement result can contain multiple Response objects.

	Property

	Type

	Explanation

	raw_data

	dict

	The portion of the JSON that pertains to this response

	offset

	float

	The NTP offset

	rtt

	float

	The response time

	final_timestamp

	float

	A full-precision Unix timestamp for when the NTP client received the response

	origin_timestamp

	float

	A full-precision Unix timestamp for when the NTP client send packet to the server

	received_timestamp

	float

	A full-precision Unix timestamp for when the NTP server received the request

	transmitted_timestamp

	float

	A full-precision Unix timestamp for when the NTP server transmitted the response

	final_time

	datetime

	A Python datetime object with limited precision[1] based on final_timestamp

	origin_time

	datetime

	A Python datetime object with limited precision[1] based on origin_timestamp

	received_time

	datetime

	A Python datetime object with limited precision[1] based on received_timestamp

	transmitted_time

	datetime

	A Python datetime object with limited precision[1] based on transmitted_timestamp

	1

	Python datetime objects are limited to 6 decimal places of precision.

How To Contribute

We would love to have contributions from everyone and no contribution is too
small. Please submit as many fixes for typos and grammar bloopers as you can!

To make participation in this project as pleasant as possible for everyone,
we adhere to the Code of Conduct [https://www.python.org/psf/codeofconduct/] by the Python Software Foundation.

The following steps will help you get started:

Fork, then clone the repo:

$ git clone git@github.com:your-username/ripe.atlas.sagan.git

Make sure the tests pass beforehand:

$ tox

or

$ nosetests tests/

Make your changes. Include tests for your change. Make the tests pass:

$ tox

or

$ nosetests tests/

Push to your fork and submit a pull request [https://github.com/RIPE-NCC/ripe.atlas.sagan/compare/].

Here are a few guidelines that will increase the chances of a quick merge of
your pull request:

	Always try to add tests and docs for your code. If a feature is tested and
documented, it’s easier for us to merge it.

	Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	If you change something that is noteworthy, don’t forget to add an entry to
the changes [https://github.com/RIPE-NCC/ripe.atlas.sagan/blob/master/CHANGES.rst].

Note

	If you think you have a great contribution but aren’t sure whether it
adheres – or even can adhere – to the rules: please submit a pull
request anyway! In the best case, we can transform it into something
usable, in the worst case the pull request gets politely closed. There’s
absolutely nothing to fear.

	If you have a great idea but you don’t know how or don’t have the time to
implement it, please consider opening an issue and someone will pick it up
as soon as possible.

Thank you for considering a contribution to this project! If you have any
questions or concerns, feel free to reach out the RIPE Atlas team via the
mailing list [https://www.ripe.net/mailman/listinfo/ripe-atlas], GitHub Issue Queue [https://github.com/RIPE-NCC/ripe.atlas.sagan/issues], or messenger pigeon [https://tools.ietf.org/html/rfc1149] – if you must.

Changelog

	
	1.2

	
	Replaced pyOpenSSL with cryptography

	Added parsing of subjectAltName X509 extension

	
	1.1.11

	
	Added first version of WiFi results

	
	1.1.10

	
	Added a parse_all_hops kwarg to the Traceroute class to tell Sagan to stop parsing Hops and Packets once we have all of the last hop statistics (default=True)

	Remove dependency on IPy: we were using it for IPv6 canonicalization, but all IPv6 addresses in results should be in canonical form to start with.

	
	1.1.9

	
	Removed the parse_abuf script because no one was using it and its
Python3 support was suspect anyway.

	
	1.1.8

	
	Handle case where a traceroute result might not have dst_addr field.

	
	1.1.7

	
	Change condition of traceroute’s last_hop_responded flag.

	Add couple of more traceroute’s properties. is_success and last_hop_errors.

	Add tests to the package itself.

	
	1.1.6

	
	Fix for Issue #56 [https://github.com/RIPE-NCC/ripe.atlas.sagan/issues/56] a case where the qbuf value wasn’t being properly
captured.

	Fixed small bug that didn’t accurately capture the DO property from
the qbuf.

	
	1.1.5

	
	We now ignore so-called “late” packets in traceroute results. This will
likely be amended later as future probe firmwares are expected to make
better use of this value, but until then, Sagan will treat these packets
as invalid.

	
	1.1.4

	
	Added a type attribute to all Result subclasses

	Added support for a lot of new DNS answer types, including NSEC,
PTR, SRV, and more. These answers do not yet have a complete
string representation however.

	
	1.1.3

	
	Changed the name of TracerouteResult.rtt_median to
TracerouteResult.last_rtt_median.

	Modified the DnsResult class to allow the “bubbling up” of error
statuses.

	
	1.1.2

	
	We skipped this number for some reason :-/

	
	1.1.1

	
	Fixed a string representation bug [https://github.com/RIPE-NCC/ripe-atlas-tools/issues/1] found by iortiz [https://github.com/iortiz]

	
	1.1.0

	
	Breaking Change: the Authority and Additional classes were
removed, replaced with the appropriate answer types. For the most part,
this change should be invisible, as the common properties are the same,
but if you were testing code against these class types, you should
consider this a breaking change.

	Breaking Change: The __str__ format for DNS RrsigAnswer to
conform the output of a typical dig binary.

	Added __str__ definitions to DNS answer classes for use with the
toolkit.

	In an effort to make Sagan (along with Cousteau and the toolkit) more
portable, we dropped the requirement for the arrow package.

	
	1.0.0

	
	1.0! w00t!

	Breaking Change: the data property of the TxtAnswer class was
changed from a string to a list of strings. This is a correction from
our own past deviation from the RFC, so we thought it best to conform as
part of the move to 1.0.0

	Fixed a bug where non-ascii characters in DNS TXT answers resulted in an
exception.

	
	0.8.2

	
	Fixed a bug related to non-ascii characters in SSL certificate data.

	Added a wrapper for json loaders to handle differences between ujson and
the default json module.

	
	0.8.1

	
	Minor fix to make all Result objects properly JSON serialisable.

	
	0.8.0

	
	Added iortiz [https://github.com/iortiz]’s patch for flags and flags
and sections properties on DNS Answer objects.

	
	0.7.1

	
	Changed README.md to README.rst to play nice with pypi.

	
	0.7

	
	Added pierky [https://github.com/pierky]’s new RRSigAnswer class to
the dns parser.

	
	0.6.3

	
	Fixed a bug in how Sagan deals with inappropriate firmware versions

	
	0.6.2

	
	Added pierky [https://github.com/pierky]’s fix to fix AD and CD flags
parsing in DNS Header

	
	0.6.1

	
	Added rtt_min, rtt_max, offset_min, and offset_max to
NTPResult

	
	0.6.0

	
	Support for NTP measurements

	Fixes for how we calculate median values

	Smarter setup.py

	
	0.5.0

	
	Complete Python3 support!

	
	0.4.0

	
	Added better Python3 support. Tests all pass now for ping, traceroute,
ssl, and http measurements.

	Modified traceroute results to make use of destination_ip_responded
and last_hop_responded, deprecating target_responded. See the
docs for details.

	
	0.3.0

	
	Added support for making use of some of the pre-calculated values in DNS
measurements so you don’t have to parse the abuf if you don’t need it.

	Fixed a bug in the abuf parser where a variable was being referenced by
never defined.

	Cleaned up some of the abuf parser to better conform to pep8.

	
	0.2.8

	
	Fixed a bug where DNS TXT results with class IN were missing a
.data value.

	Fixed a problem in the SSL unit tests where \n was being
misinterpreted.

	
	0.2.7

	
	Made abuf more robust in dealing with truncation.

	
	0.2.6

	
	Replaced SslResult.get_checksum_chain() with the
SslResult.checksum_chain property.

	Added support for catching results with an err property as an actual
error.

	
	0.2.5

	
	Fixed a bug in how the on_error and on_malformation preferences
weren’t being passed down into the subcomponents of the results.

	
	0.2.4

	
	Support for seconds_since_sync across all measurement types

	
	0.2.3

	
	“Treat a missing Type value in a DNS result as a malformation” (Issue #36)

	
	0.2.2

	
	Minor bugfixes

	
	0.2.1

	
	Added a median_rtt value to traceroute Hop objects.

	Smarter and more consistent error handling in traceroute and HTTP
results.

	Added an error_message property to all objects that is set to None
by default.

	
	0.2.0

	
	Totally reworked error and malformation handling. We now differentiate
between a result (or portion thereof) being malformed (and therefore
unparsable) and simply containing an error such as a timeout. Look for
an is_error property or an is_malformed property on every object
to check for it, or simply pass on_malformation=Result.ACTION_FAIL if
you’d prefer things to explode with an exception. See the documentation
for more details

	Added lazy-loading features for parsing abuf and qbuf values out of DNS
results.

	Removed the deprecated properties from dns.Response. You must now
access values like edns0 from dns.Response.abuf.edns0.

	More edge cases have been found and accommodated.

	
	0.1.15

	
	Added a bunch of abuf parsing features from
b4ldr [https://github.com/b4ldr] with some help from
phicoh [https://github.com/phicoh].

	
	0.1.14

	
	Fixed the deprecation warnings in DnsResult to point to the right
place.

	
	0.1.13

	
	Better handling of DNSResult errors

	Rearranged the way abufs were handled in the DnsResult class to make
way for qbuf values as well. The old method of accessing header,
answers, questions, etc is still available via Response, but
this will go away when we move to 0.2. Deprecation warnings are in place.

	
	0.1.12

	
	Smarter code for checking whether the target was reached in
TracerouteResults.

	We now handle the destination_option_size and
hop_by_hop_option_size values in TracerouteResult.

	Extended support for ICMP header info in traceroute Hop class by
introducing a new IcmpHeader class.

	
	0.1.8

	
	Broader support for SSL checksums. We now make use of md5 and
sha1, as well as the original sha256.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to RIPE Atlas Sagan’s documentation!

 		
 Requirements & Installation

 		
 Requirements

 		
 Installation

 		
 Using pip

 		
 From GitHub

 		
 From a Tarball

 		
 Troubleshooting

 		
 Use & Examples

 		
 How To Use This Library

 		
 Important Note

 		
 Basics

 		
 Plain Text Not Required

 		
 Agnostic Parsing

 		
 Errors & Malformations

 		
 Examples

 		
 Parsing Results out of a Local File

 		
 Pulling Directly from the API

 		
 Samples from Each Type

 		
 Attributes & Methods

 		
 Common Attributes

 		
 Ping

 		
 Packet

 		
 Traceroute

 		
 Hop

 		
 Packet

 		
 IcmpHeader

 		
 DNS

 		
 Response

 		
 Message

 		
 SSL Certificate

 		
 Certificate

 		
 HTTP

 		
 Response

 		
 NTP

 		
 Response

 		
 How To Contribute

 		
 Changelog

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

