
RIPE Atlas Sagan Documentation
Release 1.2

Daniel Quinn

May 18, 2018

Contents

1 Why This Exists 3
1.1 Requirements & Installation . 3
1.2 Use & Examples . 4
1.3 Attributes & Methods . 8
1.4 How To Contribute . 20
1.5 Changelog . 21

i

ii

RIPE Atlas Sagan Documentation, Release 1.2

A parsing library for RIPE Atlas measurement results

Contents 1

RIPE Atlas Sagan Documentation, Release 1.2

2 Contents

CHAPTER 1

Why This Exists

RIPE Atlas generates a lot of data, and the format of that data changes over time. Often you want to do something
simple like fetch the median RTT for each measurement result between date X and date Y. Unfortunately, there are
are dozens of edge cases to account for while parsing the JSON, like the format of errors and firmware upgrades that
changed the format entirely.

To make this easier for our users (and for ourselves), we wrote an easy to use parser that’s smart enough to figure out
the best course of action for each result, and return to you a useful, native Python object.

Contents:

1.1 Requirements & Installation

1.1.1 Requirements

As you might have guessed, with all of the magic going on under the hood, there are a few dependencies:

• cryptography

• python-dateutil

• pytz

Additionally, we recommend that you also install ujson as it will speed up the JSON-decoding step considerably, and
sphinx if you intend to build the documentation files for offline use.

1.1.2 Installation

Installation should be easy, though it may take a while to install all of the aforementioned requirements. Using pip is
the recommended method.

3

https://pypi.python.org/pypi/cryptography
https://pypi.python.org/pypi/python-dateutil/
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/ujson/
https://pypi.python.org/pypi/Sphinx/

RIPE Atlas Sagan Documentation, Release 1.2

Using pip

The quickest and easiest way to install Sagan is to use pip:

$ pip install ripe.atlas.sagan

From GitHub

If you’re feeling a little more daring and want to use whatever is on GitHub, you can have pip install right from there:

$ pip install git+https://github.com/RIPE-NCC/ripe.atlas.sagan.git

From a Tarball

If for some reason you want to just download the source and install it manually, you can always do that too. Simply
un-tar the file and run the following in the same directory as setup.py.:

$ python setup.py install

Troubleshooting

Some setups (like MacOS) have trouble with building the dependencies required for reading SSL certificates. If you
don’t care about SSL stuff and only want to use sagan to say, parse traceroute or DNS results, then you can do the
following:

$ SAGAN_WITHOUT_SSL=1 pip install ripe.atlas.sagan

More information can also be found here.

If you do care about SSL and have to use a Mac, then this issue will likely be of assistance. Essentially, you will need
to uninstall Xcode (if it’s installed already), then attempt to use gcc. This will trigger the OS to ask if you want to
install the Xcode compilation tools. Click install, and when that’s finished, install Sagan with this command:

$ CFLAGS=”-I/usr/include” pip install ripe.atlas.sagan

1.2 Use & Examples

The library contains a full test suite for each measurement type, so if you’re looking for examples, it’s a good idea to
start there. For this document we’ll cover basic usage and some simple examples to get you started.

1.2.1 How To Use This Library

Sagan’s sole purpose is to make RIPE Atlas measurements manageable from within Python. You shouldn’t have to be
fiddling with JSON, or trying to find values that changed locations between firmware versions. Instead, you should
always be able to pass in the JSON string and immediately get usable Python objects.

4 Chapter 1. Why This Exists

https://cryptography.io/en/latest/installation/
https://github.com/RIPE-NCC/ripe.atlas.sagan/issues/52

RIPE Atlas Sagan Documentation, Release 1.2

Important Note

The one thing that tends to confuse people when first trying out Sagan is that this library operates on single measure-
ment results, and not a list of results. If you have a list of results (for example, the output of the measurement results
API), then you must loop over those results and pass each result to Sagan for parsing.

Basics

To that end, the interface is pretty simple. If you have a ping measurement result, then use the PingResult class to
make use of the data:

from ripe.atlas.sagan import PingResult

my_result = PingResult('this is where your big JSON blob goes')

my_result.af
Returns 6

my_result.rtt_median
Returns 123.456

Note that rtt_median isn’t actually in the JSON data passed in. It’s calculated during the parsing phase so you
don’t need to fiddle with looping over attributes in a list and doing the math yourself.

Plain Text Not Required

It should be noted that while all of the examples here use a plain text string for our results, Sagan doesn’t force you
to pass in a string. It’s just as happy with a Python dict, the result of already running your result string through
json.loads():

import json
from ripe.atlas.sagan import PingResult

my_result_dict = json.loads('this is where your big JSON blob goes')
my_result = PingResult(my_result_dict)

my_result.af
Returns 6

my_result.rtt_median
Returns 123.456

Agnostic Parsing

There may be a case where you have code that’s just expected to parse a result string, without knowing ahead of time
what type of result it is. For this we make use of the parent Result class’ get() method:

from ripe.atlas.sagan import Result

my_result = Result.get('this is where your big JSON blob goes')

my_result.af
Returns 6

(continues on next page)

1.2. Use & Examples 5

RIPE Atlas Sagan Documentation, Release 1.2

(continued from previous page)

my_result.rtt_median
Returns 123.456

As you can see it works just like PingResult, but doesn’t force you to know its type up front. Note that this does incur
a small performance penalty however.

Errors & Malformations

RIPE Atlas, like the Internet is never 100% what you’d expect. Sometimes your measurement will return an error such
as a timout or DNS lookup problem, and sometimes the data in a result might even be malformed on account of data
corruption, damaged probe storage, etc.

And like the most applications on the Internet, Sagan attemps to handle these inconsistencies gracefully. You can
decide just how gracefully however.

Say for example you’ve got a result that looks alright, but the abuf value is damaged in some way rendering it
unreadable. You’ll find that while the DnsResult object will not have a is_malformed=False, the portion that
is unreadable will be set to True:

from ripe.atlas.sagan import DnsResult
my_result = DnsResult('your JSON blob')

my_result.is_error # False
my_result.is_malformed # False
my_result.responses[0].abuf.is_malformed # True
my_result.responses[1].abuf.is_malformed # False

You can control what you’d like Sagan to do in these cases by setting on_malformation= when parsing:

from ripe.atlas.sagan import DnsResult

Sets is_malformed=True and issues a warning
my_result = DnsResult('your JSON blob')

Sets is_malformed=True
my_result = DnsResult('your JSON blob', on_malformation=DnsResult.ACTION_IGNORE)

Sets explodes with a ResultParseError
my_result = DnsResult('your JSON blob', on_malformation=DnsResult.ACTION_FAIL)

Similarly, you can do the same thing with on_error=, which perform the same way when Sagan encounters an error
like a timeout or DNS lookup problem.

Error handling is not yet complete in Sagan, so if you run across a case where it behaves in a way other than what
you’d expect, please send a copy of the problematic result to atlas@ripe.net and we’ll use it to update this library.

1.2.2 Examples

Parsing Results out of a Local File

Assume for a moment that you’ve downloaded a bunch of results into a local file using our fragmented JSON format.
That is, you have in your possession a file that has a separate JSON result on every line. For the purposes of our
example we’ll call it file.txt.:

6 Chapter 1. Why This Exists

mailto:atlas@ripe.net

RIPE Atlas Sagan Documentation, Release 1.2

from ripe.atlas.sagan import Result

my_results_file = "/path/to/file.txt"
with open(my_results_file) as results:

for result in results.readlines():
parsed_result = Result.get(result)
print(parsed_result.origin)

Basically you use Python to open the file (using with) and then loop over each line in the file (.readlines()),
sending each line into Sagan which returns a parsed_result. With that result, you can then pull out any of the
values you like, using the Attributes & Methods documentation as a reference.

Pulling Directly from the API

A common use case for the parser is to plug it into our RESTful API service. The process for this is pretty simple:
fetch a bunch of results, loop over them, and for each one, apply the parser to get the value you want.

Say for example you want to get the checksum value for each result from measurement #1012449. To do this, we’ll
fetch the latest results from each probe via the measurement-latestAPI, and parse each one to get the checksum
values:

import requests
from ripe.atlas.sagan import SslResult

source = "https://atlas.ripe.net/api/v1/measurement-latest/1012449/"
response = requests.get(source).json

for probe_id, result in response.items():

result = result[0] # There's only one result for each probe
parsed_result = SslResult(result) # Parsing magic!

Each SslResult has n certificates
for certificate in parsed_result.certificates:

print(certificate.checksum) # Print the checksum for this certificate

Make use of the handy get_checksum_chain() to render the checksum of each
→˓certificate into one string if you want

print(parsed_result.get_checksum_chain())

Samples from Each Type

Ping

For more information regarding all properties available, you should consult the Ping section of this documentation.:

ping_result.packets_sent # Int
ping_result.rtt_median # Float, rounded to 3 decimal places
ping_result.rtt_average # Float, rounded to 3 decimal places

1.2. Use & Examples 7

https://atlas.ripe.net/measurements/1012449/

RIPE Atlas Sagan Documentation, Release 1.2

Traceroute

For more information regarding all properties available, you should consult the Traceroute section of this documenta-
tion.:

traceroute_result.af # 4 or 6
traceroute_result.total_hops # Int
traceroute_result.destination_address # An IP address string

DNS

For more information regarding all properties available, you should consult the DNS section of this documentation.:

dns_result.responses # A list of Response objects
dns_result.responses[0].response_time # Float, rounded to 3 decimal places
dns_result.responses[0].headers # A list of Header objects
dns_result.responses[0].headers[0].nscount # The NSCOUNT value for the first header
dns_result.responses[0].questions # A list of Question objects
dns_result.responses[0].questions[0].type # The TYPE value for the first question
dns_result.responses[0].abuf # The raw, unparsed abuf string

SSL Certificates

For more information regarding all properties available, you should consult the SSL Certificate section of this docu-
mentation.:

ssl_result.af # 4 or 6
ssl_result.certificates # A list of Certificate objects
ssl_result.certificates[0].checksum # The checksum for the first certificate

HTTP

For more information regarding all properties available, you should consult the HTTP section of this documentation.:

http_result.af # 4 or 6
http_result.uri # A URL string
http_result.responses # A list of Response objects
http_result.responses[0].body_size # The size of the body of the first response

1.3 Attributes & Methods

1.3.1 Common Attributes

All measurement results have a few common properties.

8 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
raw_data dict The entire measurement result, as-is from json.loads()
created datetime The time at which this result was initiated
created_timestamp int A Unix timestamp value for the created attribute
measurement_id int
probe_id int
firmware int The probe firmware release
origin str The IP address of the probe
seconds_since_sync int The number of seconds since the probe last syncronised its clock
is_malformed bool Whether the result (or related portion thereof) is unparseable
is_error bool Whether or not there were errors in parsing/handling this result
error_message str If the result is an error, the message string is in here

1.3.2 Ping

The simplest measurement type, ping measurement results contain all of the properties common to all measurements
as well as the following:

Property Type Explanation
af int The address family. It’s always either a 4 or a 6.
duplicates int The number duplicates found
rtt_average float
rtt_median float
rtt_min float
rtt_max float
packets_sent int
packets_received int
packet_size int
destination_name str The string initially given as the target. It can be an IP address or a domain name
destination_address str An IP address represented as a string
step int The number of seconds between ping requests (interval)
packets list A list of ping Packet objects

Packet

Each ping request sends n packets, where n is a value specified at measurement creation time. We represent these
packets as Packet objects.

Property Type Explanation
rtt float
dup bool Set to True if this packet is a duplicate
ttl int
source_address str An IP address represented as a string

1.3.3 Traceroute

Probably the largest result type, traceroute measurement results contain all of the properties common to all mea-
surements as well as the following:

1.3. Attributes & Methods 9

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
af int The address family. It’s always either a 4 or a 6.
destina-
tion_name

str The string initially given as the target. It can be an IP address or a domain name

destina-
tion_address

str An IP address represented as a string

source_address str An IP address represented as a string
end_time date-

time
The time at which the traceroute finished

end_time_timestampint A Unix timestamp for the end_time attribute
paris_id int
size int The packet size
protocol str One of ICMP, TCP, UDP
hops list A list of Hop objects. If the parse_all_hops parameter is False, this will only

contain the last hop.
total_hops int The total number of hops
ip_path list A list of dicts containing the IPs at each hop. This is just for convenience as all of these

values are accessible via the Hop and Packet objects.
last_median_rtt float The median value of all RTTs from the last successful hop
destina-
tion_ip_responded

bool Set to True if the last hop was a response from the destination IP

last_hop_respondedbool Set to True if the last hop was a response at all
is_success bool Set to True if the traceroute finished successfully
last_hop_errors list A list of last hop’s errors

It is also possible to supply the following parameter to control parsing of Traceroute results:

Param-
eter

Type De-
fault

Explanation

parse_all_hopsbool True Set to False to stop parsing Hop objects after the last_* properties (see above) have
been set. This will cause hops to only contain the last Hop.

Hop

Each hop in the traceroute is available as a Hop object.

Property Type Explanation
index int The hop number, starting with 1
packets list A list of tracroute Packet objects
median_rtt float The median value of all RTTs of the hop

10 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

Packet

Property Type Explanation
origin str The IP address of where the packet is coming from
rtt float
size int
ttl int
arrived_late_by int If the packet arrived late, this number represents “how many hops ago” this

packet was sent
internal_ttl int The time-to-live for the packet that triggered the error ICMP. The default is 1
destina-
tion_option_size

int The size of the IPv6 destination option header

hop_by_hop_option_sizeint The size of the IPv6 hop-by-hop option header
icmp_header Icmp-

Header
See IcmpHeader below

IcmpHeader

This class is slightly different than other parts of Sagan as it in objects we find a complex generic list containing
generic dictionaries pulled directly from the JSON blob. The decision not to further parse this bob into separate Python
models was made based on the assumption that much of this section is very edge-case and the contents are present
sporadically.

If however there is a demand for further development of this portion of the result, we can expand it. Until then though,
IcmpHeader is a very simple class, the majority of data living in objects.

For further information about this portion of a traceroute result, you should consult our data structure documentation

Property Type Explanation
version int RFC4884 version
rfc4884 bool True if length indication is present, False otherwise
objects list As mentioned above a complete dump of whatever is in the obj property

1.3.4 DNS

The most complicated result type, dns measurement results contain all of the properties common to all measurements
as well as the following:

Property Type Explanation
responses list A list of DNS Response objects (see below)

Response

Most DNS measurement results consist of a single response, but in some cases, there may be more than one. Regard-
less, every Response instance has the following properties:

1.3. Attributes & Methods 11

https://atlas.ripe.net/docs/data_struct/#v4610_traceroute

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
raw_data dict The fragment of the initial JSON that pertains to this response
af int The address family. It’s always either a 4 or a 6.
destina-
tion_address

str An IP address represented as a string

source_address str An IP address represented as a string
protocol str One of TCP, UDP
abuf Mes-

sage
See Message below

qbuf Mes-
sage

See Message below

re-
sponse_time

float Time, in milliseconds until the response was received

response_id int The sequence number of this result within a group of results, available if the resolution
was done by the probe’s local resolver

Message

Responses can contain either an abuf or a qbuf which are both Message objects. If you want the string represen-
tation, simply cast the object as a string with str().

Property Type Explanation
raw_data dict The fragment of the initial JSON that pertains to this response
header Header See Header below
edns0 Edns0 See EDNS0 below, if any
questions list A list of Question objects
answers list A list of Answer objects, if any
authorities list A list of Answer objects, if any
additionals list A list of Answer objects, if any

A note on pre-calculated values

By default, when you pass a result into Sagan, it will attempt to parse the abuf and qbuf strings (if any) into
Message objects. However, some of the values in that abuf may have already been pre-calculated and stored alongside
the other attributes in the result. Many Header values for example, can be found in the raw result (outside of the abuf
string), so parsing the abuf for these values is redundant and potentially unnecessary if these values are all you need.

For this case, Sagan supports passing parse_buf=False to the DnsResult class. If you opt for this method, the
abuf will not be parsed, and any values not immediately available in the result will return None. For example:

from ripe.atlas.sagan import DnsResult
my_result = DnsResult(

'<some result data including name, type, and rdata, but not ttl or class>',
parse_buf=False

)
result.responses[0].abuf.answers[0].name # "version.bind"
result.responses[0].abuf.answers[0].klass # None
result.responses[0].abuf.answers[0].rd_length # None
result.responses[0].abuf.answers[0].type # "TXT"
result.responses[0].abuf.answers[0].ttl # None
result.responses[0].abuf.answers[0].data # "Some RDATA value"

12 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

Note also that Result.get() accepts parse_buf= as well:

from ripe.atlas.sagan import Result
my_result = Result.get(

'<some result data including name, type, and rdata, but not ttl or class>',
parse_buf=False

)
result.responses[0].abuf.answers[0].name # "version.bind"
...

Header

All of these properties conform to RFC 1035, so we won’t go into detail about them here.

Property Type Explanation
raw_data dict The portion of the parsed abuf that represents this section
aa bool
qr bool
nscount int Otherwise known as the namserver count or authority count.
qdcount int
ancount int
tc bool
rd bool
arcount int
return_code str
opcode str
ra bool
z int
id int

Question

The question section of the response.

NOTE: In keeping with Python conventions, we use the propertyname klass here instead of the more
intuitive (and illegal in Python) class. It may be confusing for non-Python programmers, but unfortu-
nately it’s a limitation of the language.

Property Type Explanation
raw_data dict The portion of the parsed abuf that represents this section
klass str The CLASS value, spelt this way to conform to Python norms
type str
name str

Answer

The answer section of the response.

NOTE: In keeping with Python conventions, we use the propertyname klass here instead of the more
intuitive (and illegal in Python) class. It may be confusing for non-Python programmers, but unfortu-
nately it’s a limitation of the language.

1.3. Attributes & Methods 13

https://www.ietf.org/rfc/rfc1035.txt

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
raw_data dict The portion of the parsed abuf that represents this section
klass str The CLASS value, spelt this way to conform to Python norms
type str
name str
ttl int
address str An IP address
rd_length int

There is a different sub-class of Answer for every DNS answer type. These are all briefly outlined below.

AAnswer & AAAAAnswer

Both of these classes have only one additional property to their parent Answer class: address.

Property Type Explanation
answer str The address response

NsAnswer & CnameAnswer

Both of these subclasses only have one additional property: target.

Property Type Explanation
target str The address of the target

MxAnswer

Property Type Explanation
preference int The preference number
mail_exchanger str The exchanger name

SoaAnswer

There are a lot of additional properties for SOA answers, as well as a few aliases for people who like human-readable
names.

14 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
mname str The master server name
rname str The maintainer name
serial int
refresh int
retry int
expire int
minimum int The negative TTL
master_server_name str An alias for mname
maintainer_name str An alias for rname
negative_ttl str An alias for minimum
nxdomain str An alias for minimum

DsAnswer

Property Type
tag int
algorithm int
digest_type int
delegation_key str

DnskeyAnswer

Property Type
flags int
algorithm int
protocol int
key str

TxtAnswer

A class for DNS TXT responses, TxtAnswer has all of the properties of an Answer class, but with two additional
properties:

Property Type Explanation
data list The response text, represented as a list of strings, though in most cases, the list has only one

element.
data_string str The string representation of data, joining all elements of the list with a space.

1.3. Attributes & Methods 15

RIPE Atlas Sagan Documentation, Release 1.2

RRSigAnswer

Property Type
type_covered str
algorithm int
labels int
original_ttl int
signature_expiration int
signature_inception int
key_tag int
signer_name str
signature str

Note that RRsigAnswer``s have a special string representation, where the values
of ``type_covered, algorithm, labels, original_ttl, signature_expiration,
signature_inception, key_tag, signer_name`, and ``signature are all concatenated with
spaces.

NsecAnswer

Property Type
next_domain_name str
types list

Nsec3Answer

Property Type
hash_algorithm int
flags int
iterations int
salt str
hash str
types list

Nsec3ParamAnswer

Property Type
algorithm int
flags int
iterations int
salt str

16 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

PtrAnswer

Property Type
target str

SrvAnswer

Property Type
priority int
weight int
port int
target str

SshfpAnswer

Property Type
algorithm int
digest_type int
fingerprint str

TlsaAnswer

Property Type
certificate_usage int
selector int
matching_type int
certificate_associated_data str

HinfoAnswer

Property Type
cpu str
os str

EDNS0

The optional EDNS0 section of the response.

1.3. Attributes & Methods 17

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
raw_data dict The portion of the parsed abuf that represents this section
extended_return_code int
name str
type str
udp_size int
version int
z int
options list A list of Option objects

Option

Property Type Explanation
raw_data dict The portion of the EDNS0 section that represents this option
nsid str
code int
length int
name str

1.3.5 SSL Certificate

SSL certificate measurement results contain all of the properties common to all measurements as well as the following:

Property Type Explanation
af int The address family. It’s always either a 4 or a 6.
destina-
tion_name

str The string initially given as the target. It can be an IP address or a domain name

destina-
tion_address

str An IP address

source_addressstr An IP address
port int The port numer
method str This should always be “SSL”
version str
re-
sponse_time

float Time, in milliseconds until the response was received

time_to_connectfloat Time, in milliseconds until the connection was established
certifi-
cates

list A list of Certificate objects

is_signed bool Set to True if the certificate is self-signed
check-
sum_chain

str A list of all checksums for all certificates in this result, joined with the arbitrary string ::. This
can come in handy when you’re trying to compare checksums of multiple results.

Certificate

Each SSL certificate measurement result can contain multiple Certificate objects.

18 Chapter 1. Why This Exists

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
raw_data dict The fragment of the initial JSON that pertains to this response
subject_cn str The subject’s common name
subject_o str The subject’s organisation
subject_c str The subject’s country
issuer_cn str The issuer’s common name
issuer_o str The issuer’s organisation
issuer_c str The issuer’s country
valid_from date-

time
valid_until date-

time
check-
sum_md5

str The md5 checksum

check-
sum_sha1

str The sha1 checksum

check-
sum_sha256

str The sha256 checksum

has_expired bool Set to True if the certificate is no longer valid
extensions dict Parsed extensions. For now it can only be subjectAltName, which is a list of names

contained in the SAN extension, if that exists.

1.3.6 HTTP

HTTP measurement results contain all of the properties common to all measurements as well as the following:

Property Type Explanation
uri str
method str The HTTP method
responses list A list of Response objects

Response

Each HTTP measurement result can contain multiple Response objects.

Property Type Explanation
raw_data dict The portion of the JSON that pertains to this response
af int The address family. It’s always either a 4 or a 6.
body_size int The total number of bytes in the body
head_size int The total number of bytes in the head
destination_address str An IP address
source_address str An IP address
code int The HTTP response code
response_time float Time, in milliseconds until the response was received
version str The HTTP version

1.3.7 NTP

NTP measurement results contain all of the properties common to all measurements as well as the following:

1.3. Attributes & Methods 19

RIPE Atlas Sagan Documentation, Release 1.2

Property Type Explanation
leap_second_indicator str Leap second indicator
poll int Poll interval
precision float
protocol str UDP
reference_id str Reference id returned by server
reference_time float The NTP time the server last contacted the reference time source
root_delay float Round trip time from the server to the reference time source
root_dispersion float Accuracy of server’s clock
stratum int How far in hops is server from reference time source
version int The NTP version
mode str Ntp communication mode. Usually server
rtt_median float The median value of packets’ rtt
offset_median float The median value of the packets’ offset
packets list A list of ntp Response objects

Response

Each HTTP measurement result can contain multiple Response objects.

Property Type Explanation
raw_data dict The portion of the JSON that pertains to this response
offset float The NTP offset
rtt float The response time
final_timestamp float A full-precision Unix timestamp for when the NTP client received the response
origin_timestamp float A full-precision Unix timestamp for when the NTP client send packet to the

server
re-
ceived_timestamp

float A full-precision Unix timestamp for when the NTP server received the request

transmit-
ted_timestamp

float A full-precision Unix timestamp for when the NTP server transmitted the re-
sponse

final_time date-
time

A Python datetime object with limited precision[1] based on
final_timestamp

origin_time date-
time

A Python datetime object with limited precision[1] based on
origin_timestamp

received_time date-
time

A Python datetime object with limited precision[1] based on
received_timestamp

transmitted_time date-
time

A Python datetime object with limited precision[1] based on
transmitted_timestamp

1.4 How To Contribute

We would love to have contributions from everyone and no contribution is too small. Please submit as many fixes for
typos and grammar bloopers as you can!

To make participation in this project as pleasant as possible for everyone, we adhere to the Code of Conduct by the
Python Software Foundation.

The following steps will help you get started:

Fork, then clone the repo:

20 Chapter 1. Why This Exists

https://www.python.org/psf/codeofconduct/

RIPE Atlas Sagan Documentation, Release 1.2

$ git clone git@github.com:your-username/ripe.atlas.sagan.git

Make sure the tests pass beforehand:

$ tox

or

$ nosetests tests/

Make your changes. Include tests for your change. Make the tests pass:

$ tox

or

$ nosetests tests/

Push to your fork and submit a pull request.

Here are a few guidelines that will increase the chances of a quick merge of your pull request:

• Always try to add tests and docs for your code. If a feature is tested and documented, it’s easier for us to merge
it.

• Follow PEP 8.

• Write good commit messages.

• If you change something that is noteworthy, don’t forget to add an entry to the changes.

Note:

• If you think you have a great contribution but aren’t sure whether it adheres – or even can adhere – to the rules:
please submit a pull request anyway! In the best case, we can transform it into something usable, in the worst
case the pull request gets politely closed. There’s absolutely nothing to fear.

• If you have a great idea but you don’t know how or don’t have the time to implement it, please consider opening
an issue and someone will pick it up as soon as possible.

Thank you for considering a contribution to this project! If you have any questions or concerns, feel free to reach out
the RIPE Atlas team via the mailing list, GitHub Issue Queue, or messenger pigeon – if you must.

1.5 Changelog

• 1.2

– Replaced pyOpenSSL with cryptography

– Added parsing of subjectAltName X509 extension

• 1.1.11

– Added first version of WiFi results

• 1.1.10

1.5. Changelog 21

https://github.com/RIPE-NCC/ripe.atlas.sagan/compare/
https://www.python.org/dev/peps/pep-0008/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://github.com/RIPE-NCC/ripe.atlas.sagan/blob/master/CHANGES.rst
https://www.ripe.net/mailman/listinfo/ripe-atlas
https://github.com/RIPE-NCC/ripe.atlas.sagan/issues
https://tools.ietf.org/html/rfc1149

RIPE Atlas Sagan Documentation, Release 1.2

– Added a parse_all_hops kwarg to the Traceroute class to tell Sagan to stop parsing Hops and Packets
once we have all of the last hop statistics (default=True)

– Remove dependency on IPy: we were using it for IPv6 canonicalization, but all IPv6 addresses in
results should be in canonical form to start with.

• 1.1.9

– Removed the parse_abuf script because no one was using it and its Python3 support was suspect
anyway.

• 1.1.8

– Handle case where a traceroute result might not have dst_addr field.

• 1.1.7

– Change condition of traceroute’s last_hop_responded flag.

– Add couple of more traceroute’s properties. is_success and last_hop_errors.

– Add tests to the package itself.

• 1.1.6

– Fix for Issue #56 a case where the qbuf value wasn’t being properly captured.

– Fixed small bug that didn’t accurately capture the DO property from the qbuf.

• 1.1.5

– We now ignore so-called “late” packets in traceroute results. This will likely be amended later as
future probe firmwares are expected to make better use of this value, but until then, Sagan will treat
these packets as invalid.

• 1.1.4

– Added a type attribute to all Result subclasses

– Added support for a lot of new DNS answer types, including NSEC, PTR, SRV, and more. These
answers do not yet have a complete string representation however.

• 1.1.3

– Changed the name of TracerouteResult.rtt_median to TracerouteResult.
last_rtt_median.

– Modified the DnsResult class to allow the “bubbling up” of error statuses.

• 1.1.2

– We skipped this number for some reason :-/

• 1.1.1

– Fixed a string representation bug found by iortiz

• 1.1.0

– Breaking Change: the Authority and Additional classes were removed, replaced with the
appropriate answer types. For the most part, this change should be invisible, as the common properties
are the same, but if you were testing code against these class types, you should consider this a breaking
change.

– Breaking Change: The __str__ format for DNS RrsigAnswer to conform the output of a typical
dig binary.

– Added __str__ definitions to DNS answer classes for use with the toolkit.

22 Chapter 1. Why This Exists

https://github.com/RIPE-NCC/ripe.atlas.sagan/issues/56
https://github.com/RIPE-NCC/ripe-atlas-tools/issues/1
https://github.com/iortiz

RIPE Atlas Sagan Documentation, Release 1.2

– In an effort to make Sagan (along with Cousteau and the toolkit) more portable, we dropped the
requirement for the arrow package.

• 1.0.0

– 1.0! w00t!

– Breaking Change: the data property of the TxtAnswer class was changed from a string to a list
of strings. This is a correction from our own past deviation from the RFC, so we thought it best to
conform as part of the move to 1.0.0

– Fixed a bug where non-ascii characters in DNS TXT answers resulted in an exception.

• 0.8.2

– Fixed a bug related to non-ascii characters in SSL certificate data.

– Added a wrapper for json loaders to handle differences between ujson and the default json module.

• 0.8.1

– Minor fix to make all Result objects properly JSON serialisable.

• 0.8.0

– Added iortiz’s patch for flags and flags and sections properties on DNS Answer objects.

• 0.7.1

– Changed README.md to README.rst to play nice with pypi.

• 0.7

– Added pierky’s new RRSigAnswer class to the dns parser.

• 0.6.3

– Fixed a bug in how Sagan deals with inappropriate firmware versions

• 0.6.2

– Added pierky’s fix to fix AD and CD flags parsing in DNS Header

• 0.6.1

– Added rtt_min, rtt_max, offset_min, and offset_max to NTPResult

• 0.6.0

– Support for NTP measurements

– Fixes for how we calculate median values

– Smarter setup.py

• 0.5.0

– Complete Python3 support!

• 0.4.0

– Added better Python3 support. Tests all pass now for ping, traceroute, ssl, and http measurements.

– Modified traceroute results to make use of destination_ip_responded and
last_hop_responded, deprecating target_responded. See the docs for details.

• 0.3.0

– Added support for making use of some of the pre-calculated values in DNS measurements so you
don’t have to parse the abuf if you don’t need it.

1.5. Changelog 23

https://github.com/iortiz
https://github.com/pierky
https://github.com/pierky

RIPE Atlas Sagan Documentation, Release 1.2

– Fixed a bug in the abuf parser where a variable was being referenced by never defined.

– Cleaned up some of the abuf parser to better conform to pep8.

• 0.2.8

– Fixed a bug where DNS TXT results with class IN were missing a .data value.

– Fixed a problem in the SSL unit tests where \n was being misinterpreted.

• 0.2.7

– Made abuf more robust in dealing with truncation.

• 0.2.6

– Replaced SslResult.get_checksum_chain() with the SslResult.checksum_chain
property.

– Added support for catching results with an err property as an actual error.

• 0.2.5

– Fixed a bug in how the on_error and on_malformation preferences weren’t being passed down
into the subcomponents of the results.

• 0.2.4

– Support for seconds_since_sync across all measurement types

• 0.2.3

– “Treat a missing Type value in a DNS result as a malformation” (Issue #36)

• 0.2.2

– Minor bugfixes

• 0.2.1

– Added a median_rtt value to traceroute Hop objects.

– Smarter and more consistent error handling in traceroute and HTTP results.

– Added an error_message property to all objects that is set to None by default.

• 0.2.0

– Totally reworked error and malformation handling. We now differentiate between a result (or portion
thereof) being malformed (and therefore unparsable) and simply containing an error such as a timeout.
Look for an is_error property or an is_malformed property on every object to check for it, or
simply pass on_malformation=Result.ACTION_FAIL if you’d prefer things to explode with
an exception. See the documentation for more details

– Added lazy-loading features for parsing abuf and qbuf values out of DNS results.

– Removed the deprecated properties from dns.Response. You must now access values like edns0
from dns.Response.abuf.edns0.

– More edge cases have been found and accommodated.

• 0.1.15

– Added a bunch of abuf parsing features from b4ldr with some help from phicoh.

• 0.1.14

– Fixed the deprecation warnings in DnsResult to point to the right place.

24 Chapter 1. Why This Exists

https://github.com/b4ldr
https://github.com/phicoh

RIPE Atlas Sagan Documentation, Release 1.2

• 0.1.13

– Better handling of DNSResult errors

– Rearranged the way abufs were handled in the DnsResult class to make way for qbuf values
as well. The old method of accessing header, answers, questions, etc is still available via
Response, but this will go away when we move to 0.2. Deprecation warnings are in place.

• 0.1.12

– Smarter code for checking whether the target was reached in TracerouteResults.

– We now handle the destination_option_size and hop_by_hop_option_size values in
TracerouteResult.

– Extended support for ICMP header info in traceroute Hop class by introducing a new IcmpHeader
class.

• 0.1.8

– Broader support for SSL checksums. We now make use of md5 and sha1, as well as the original
sha256.

1.5. Changelog 25

	Why This Exists
	Requirements & Installation
	Use & Examples
	Attributes & Methods
	How To Contribute
	Changelog

